Salt-related Genes Expression Pattern in Salt-Tolerant and Salt-Sensitive Cultivars of Cotton (Gossypium sp.) under NaCl Stress

Authors

  • Gholam Ali Ranjbar Department of Plant Breeding and Biotechnology, Agricultural Sciences and Natural Resources University, Sari, Iran
  • Ghorban Ali Nematzadeh Genetics and Agricultural Biotechnology Institute of Tabarestan (GABIT), Sari Agricultural Sciences and Natural Resources University, Sari, Iran
  • Mohammad Reza Ramazani Moghaddam Crop and Horticultural Science Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center, AREEO, Mashhad, Iran
  • Nafise Taghizadeh Department of Plant Breeding and Biotechnology, Agricultural Sciences and Natural Resources University, Sari, Iran
Abstract:

Salinity is one of the most important limitation factors in development of agricultural products. Cotton has a relative tolerance to salinity; however, salinity reduces its growth during germination and seedling stages. In this research, split-factorial design of time based on randomized complete block design with 3 replications was used. The real-time PCR results for, root, stem, and leaves of 14-day cotton seedlings of tolerant (Sepid) and sensitive (Thermus14) cotton cultivars with salinity levels from 0 to 16 ds.m-1 were analyzed at three time points, namely 0, 7 and 14 days after salinity stress. Selected genes for Real Time PCR reaction in current study were selected using Cytoscape 3.3.0 software. Results showed that the selected genes GhERF2, GhMPK2, GhCIPK6, GbRLK, GhNHX1, GhGST, GhTPS1 and Gh14-3-3 have positively responded to salinity stress and their expression in the root was higher than in stem and leaf. Moreover, the expression of tolerant genotype (Sepid) was higher than the sensitive cultivar (Thermus 14) one, however, a slight increase in sensitive genotypes was observed in a number of genes (GhERF2 and GhGST) 14 days after starting the stress treatment.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Expressions of OsHKT1, OsHKT2, and OsVHA are differentially regulated under NaCl stress in salt-sensitive and salt-tolerant rice (Oryza sativa L.) cultivars.

Under NaCl-dominated salt stress, the key to plant survival is maintaining a low cytosolic Na(+) level or Na(+)/K(+) ratio. The OsHKT1, OsHKT2, and OsVHA transporter genes might play important roles in maintaining cytosolic Na(+) homeostasis in rice (Oryza sativa L. indica cvs Pokkali and BRRI Dhan29). Upon NaCl stress, the OsHKT1 transcript was significantly down-regulated in salt-tolerant cv....

full text

Expression pattern analysis of TomPRO2 and LaPA1 genes in tomato under in vitro salt stress by Semi-quantitative RT-PCR

The expression pattern of TomPRO2 and LaPA1 genes in two tomato (Lycopersicon esculentum) cultivars named as Isfahani and Shirazi under in vitro salt stress were investigated. Four to six weeks old in vitro grown seedlings were transferred on MS medium containing 0, 80 and 160 mM NaCl and untreated plants were used as control. RNA was extracted from root and leaf and then cDNA was synthesized. ...

full text

Network-based transcriptome analysis in salt tolerant and salt sensitive maize (Zea mays L.) genotypes

Identification of genes involved in salinity stress tolerance provides deeper insight into molecular mechanisms underlying salinity tolerance in maize. The present study was conducted in the faculty of agriculture of Urmia university, Iran, in 2018, with the aim of identifying genetic differences between two maize genotypes in tolerance to salinity stress, and the results of gene expression wer...

full text

Salt Tolerant and Sensitive Rice Varieties Display Differential Methylome Flexibility under Salt Stress

DNA methylation has been referred as an important player in plant genomic responses to environmental stresses but correlations between the methylome plasticity and specific traits of interest are still far from being understood. In this study, we inspected global DNA methylation levels in salt tolerant and sensitive rice varieties upon salt stress imposition. Global DNA methylation was quantifi...

full text

EVALUATING SALT TOLERANT COTTON GENOTYPES AT DIFFERENT LEVELS OF NaCl STRESS IN SOLUTION AND SOIL CULTURE

The study was carried out to compare generally used screening methods for salt tolerance: (i) a seedling-based, solution culture method, (ii) plant yield-based, soil method. The physiological and ionic analyses were used for comparisons of methodologies along with yield in soil based systems. The two methods were similar to each other by reproducing similar rankings for genotypes across the met...

full text

The Study of SOS Genes Expression in Mutant Barley Root under Salt Stress

Soil salinity is one of the most critical factors reducing crop yield. SOS signaling is one of the significant pathways that regulate ion homeostasis and it has the important role in mechanism of plant resistance to environmental stresses such as salt stress. Roots are the first organ of plants exposed to salt, so the role of genes involved in this pathway and their relation to salt tolerance w...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  1- 15

publication date 2018-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023